Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 30 trang 81 SBT Toán 11 – Cánh diều: Cho hàm...

Bài 30 trang 81 SBT Toán 11 - Cánh diều: Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + a{\rm{ }}\left( {x...

Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) trong trường hợp \(a = 2\). Giải và trình bày phương pháp giải - Bài 30 trang 81 sách bài tập toán 11 - Cánh diều - Bài 3. Hàm số liên tục. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + a{\rm{ }}\left( {x < 1} \right)\end{array} \right...

Question - Câu hỏi/Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + a{\rm{ }}\left( {x

a) Với \(a = 2\), xét tính liên tục của hàm số tại \(x = 1\).

b) Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) trong trường hợp \(a = 2\).

b) Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 1\). Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\). Từ đó tìm được \(a\).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Với \(a = 2\) ta có \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + 2{\rm{ }}\left( {x

Xét \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} - x} \right) = {1^2} - 1 = 0\), \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} \right) = 3\).

Do \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\), nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\). Do đó, hàm số không liên tục tại \(x = 1\).

b) Với \(x

Với \(x > 1\) thì \(f\left( x \right) = {x^2} - x\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\left( {1, + \infty } \right)\).

Do đó, để \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì \(f\left( x \right)\) phải liên tục tại \(x = 1\).

Tức là \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)

Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} \left( {x + a} \right) = 0 \Rightarrow 1 + a = 0 \Rightarrow a = - 1\).

Advertisements (Quảng cáo)