Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 2 trang 65 SBT Toán 11 – Chân trời sáng tạo...

Bài 2 trang 65 SBT Toán 11 - Chân trời sáng tạo tập 1: Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành cấp số cộng...

Sử dụng kiến thức về khái niệm cấp số cộng để tính: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó. Giải chi tiết - Bài 2 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 - Bài tập cuối chương 2. Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành cấp số cộng. Tính độ dài các cạnh của tam giác đó...

Question - Câu hỏi/Đề bài

Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành cấp số cộng. Tính độ dài các cạnh của tam giác đó.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về khái niệm cấp số cộng để tính: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số d không đổi, nghĩa là: \({u_{n + 1}} = {u_n} + d\) với \(n \in \mathbb{N}*\). Số d được gọi là công sai của cấp số cộng.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Gọi d là công sai của cấp số cộng và các cạnh có độ dài lần lượt là \(a - d,a,a + d\) với \(0

Vì chu vi tam giác bằng 3 nên ta có: \(a - d + a + a + d = 3 \Rightarrow 3a = 3 \Rightarrow a = 1\)

Vì tam giác trên là tam giác vuông nên theo định lý Pythagore ta có:

\({1^2} + {\left( {1 - d} \right)^2} = {\left( {1 + d} \right)^2} \Leftrightarrow 4d = 1 \Leftrightarrow d = \frac{1}{4}\) (thỏa mãn điều kiện)

Do đó, ba cạnh của tam giác trên có độ dài là \(\frac{3}{4};1;\frac{5}{4}\).

Advertisements (Quảng cáo)