Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 4 trang 65 SBT Toán 11 – Chân trời sáng tạo...

Bài 4 trang 65 SBT Toán 11 - Chân trời sáng tạo tập 1: Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh...

Sử dụng kiến thức về khái niệm cấp số cộng để tính: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó. Hướng dẫn giải - Bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 - Bài tập cuối chương 2. Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\)...

Question - Câu hỏi/Đề bài

Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về khái niệm cấp số cộng để tính: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số d không đổi, nghĩa là: \({u_{n + 1}} = {u_n} + d\) với \(n \in \mathbb{N}*\). Số d được gọi là công sai của cấp số cộng.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Vì a, b, c theo thứ tự lập thành cấp số cộng nên: \(b - a = c - b \Leftrightarrow {\left( {b - a} \right)^2} = {\left( {c - b} \right)^2}\)

\( \Leftrightarrow {a^2} - 2ab + {b^2} = {b^2} - 2bc + {c^2} \Leftrightarrow {a^2} - {c^2} = 2ab - 2bc\)

Advertisements (Quảng cáo)