Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 8 trang 76 SBT Toán 11 – Chân trời sáng tạo...

Bài 8 trang 76 SBT Toán 11 - Chân trời sáng tạo tập 2: Một thùng đựng rác có dạng hình chóp cụt tứ giác đều...

Sử dụng kiến thức về thể tích khối chóp cụt đều: Hình chóp cụt đều có chiều cao h và diện tích hai đáy S, S’ là. Giải - Bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài tập cuối chương 8. Một thùng đựng rác có dạng hình chóp cụt tứ giác đều. Đáy và miệng thùng có độ dài lần lượt là 60cm và 120cm, cạnh bên của thùng dài 100cm. Tính thể tích của thùng...

Question - Câu hỏi/Đề bài

Một thùng đựng rác có dạng hình chóp cụt tứ giác đều. Đáy và miệng thùng có độ dài lần lượt là 60cm và 120cm, cạnh bên của thùng dài 100cm. Tính thể tích của thùng.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về thể tích khối chóp cụt đều: Hình chóp cụt đều có chiều cao h và diện tích hai đáy S, S’ là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS’} + S’} \right)\)

Answer - Lời giải/Đáp án

Đặt tên các điểm như hình vẽ.

Advertisements (Quảng cáo)

Kẻ \(C’H \bot AC\left( {H \in AC} \right)\)

Ta có: \(O’C’ \) \( = \frac{{\sqrt {{{120}^2} + {{120}^2}} }}{2} \) \( = 60\sqrt 2 \left( {cm} \right)\), \(OC \) \( = \frac{{\sqrt {{{60}^2} + {{60}^2}} }}{2} \) \( = 30\sqrt 2 \left( {cm} \right)\)

\( \Rightarrow CH \) \( = O’C’ - OC \) \( = 30\sqrt 2 \)

Áp dụng công thức \(V \) \( = \frac{h}{3}\left( {S + \sqrt {S’S} + S’} \right)\)

Với \(h \) \( = C’H \) \( = \sqrt {CC{‘^2} - C{H^2}} \) \( = \sqrt {{{100}^2} - {{\left( {30\sqrt 2 } \right)}^2}} \) \( = 10\sqrt {82} \left( {cm} \right)\), \(S \) \( = {120^2}\left( {c{m^2}} \right),S’ \) \( = {60^2}\left( {c{m^2}} \right)\)

Vậy thể tích thùng là: \(V \) \( = \frac{{10\sqrt {82} }}{3}\left( {{{120}^2} + \sqrt {{{120}^2}{{.60}^2}} + {{60}^2}} \right) \) \( = 84000\sqrt {82} \left( {c{m^3}} \right)\)

Advertisements (Quảng cáo)