Với giá trị nào của x, mỗi đẳng thức sau đúng?
a) \(\tan x\cot x = 1\);
b) \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\);
c) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\);
d) \(\tan x + \cot x = \frac{2}{{\sin 2x}}\).
Vì các đẳng thức đề bài cho đều đúng với mọi x thuộc tập xác định. Nên bài tập trở thành tìm tập xác định của các giá trị lượng giác.
\(\tan x\) có nghĩa khi \(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)
Advertisements (Quảng cáo)
\(\cot x\) có nghĩa khi \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)
a) Đẳng thức \(\tan x\cot x = 1\) đúng với mọi x khi \(\tan x\) và \(\cot x\) có nghĩa, tức là:
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)
b) Đẳng thức \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\) đúng với mọi x khi \(\cos x \ne 0\), tức là\(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)
c) Đẳng thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) đúng với mọi x khi \(\sin x \ne 0\), tức là: \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)
d) Đẳng thức \(\tan x + \cot x = \frac{2}{{\sin 2x}}\) đúng với mọi x khi
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)