Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.17 trang 74 SBT Hình học 11: Cho hai hình bình...

Bài 2.17 trang 74 SBT Hình học 11: Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt...

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt .Gọi O là giao điểm của AC và BD, O’ là giao điểm của AE và BF.. Bài 2.17 trang 74 Sách bài tập (SBT) Hình học 11 - Bài 3. Đường thẳng và mặt phẳng song song

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt .Gọi O là giao điểm của AC và BD, O’ là giao điểm của AE và BF.

a) Chứng minh rằng OO’ song song với hai mặt phẳng (ADF) và (BCE)

b) Gọi M và N lần lượt là trọng tâm của các tam giác ABDvà ABE. Chứng minh rằng .

(h.2.35)

a) Ta có : \(OO’\parallel DF\) ( đường trung bình của tam giác BDF).

Vì \(DF \subset \left( {ADF} \right) \Rightarrow OO’\parallel \left( {ADF} \right)\).

Tương tự \(OO’\parallel EC\) (đường trung bình của tam giác AEC).

Vì \(EC \subset \left( {BCE} \right)\) nên \(OO’\parallel \left( {BCE} \right)\).

Advertisements (Quảng cáo)

b) Gọi I là trung điểm AB;

Vì M là trọng tâm của tam giác ABD nên \(M \in DI\)

Vì N là trọng tâm của tam giác ABE nên \(N \in EI\)

Ta có : 

\(\left\{ \matrix{
{{IM} \over {I{\rm{D}}}} = {1 \over 3} \hfill \cr
{{IN} \over {IE}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{IM} \over {I{\rm{D}}}} = {{IN} \over {IE}} \Rightarrow MN\parallel DE\)

\(\left\{ \matrix{
C{\rm{D}}\parallel AB \hfill \cr
C{\rm{D}} = AB \hfill \cr
EF\parallel AB \hfill \cr
EF = AB \hfill \cr} \right.\)

Nên \(C{\rm{D}}\parallel EF\) và \(C{\rm{D  =  }}EF\), suy ra tứ giác CDFE là hình bình hành.

\(\left\{ \matrix{
MN\parallel DE \hfill \cr
DE \subset \left( {CEF} \right) \hfill \cr} \right. \Rightarrow MN\parallel \left( {CEF} \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)