Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.21 trang 75 SBT Hình học 11: Cho hình chóp S.ABCD...

Bài 2.21 trang 75 SBT Hình học 11: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di...

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Bài 2.21 trang 75 Sách bài tập (SBT) Hình học 11 - Bài 3. Đường thẳng và mặt phẳng song song

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Một mặt phẳng \(\left( \alpha  \right)\) đi qua M và song song với SA và BC; \(\left( \alpha  \right)\) cắt SB, SC và CD lần lượt tại N, P và Q

a) Tứ giác MNPQ là hình gì?

b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định.

a) Vì \(M \in \left( {SAB} \right)\)

Và \(\left\{ \matrix{\left( \alpha \right)\parallel SA \hfill \cr SA \subset \left( {SAB} \right) \hfill \cr} \right.\) nên \(\left( \alpha  \right) \cap \left( {SAB} \right) = MN\)

và \(MN\parallel SA\)

Vì \(N \in \left( {SBC} \right)\)

Và \(\left\{ \matrix{\left( \alpha \right)\parallel BC \hfill \cr BC \subset \left( {SBC} \right) \hfill \cr} \right.\) nên \(\left( \alpha  \right) \cap \left( {SBC} \right) = NP\)

và \(NP\parallel BC \,\,\, \left( 1 \right)\)

Advertisements (Quảng cáo)

\(\left\{ \matrix{
P,Q \in \left( \alpha \right) \hfill \cr
P,Q \in \left( {SC{\rm{D}}} \right) \hfill \cr} \right. \Rightarrow \left( \alpha \right) \cap \left( {SC{\rm{D}}} \right) = PQ\)

\(Q \in C{\rm{D}} \Rightarrow Q \in \left( {ABC{\rm{D}}} \right)\) 

Và\(\left\{ \matrix{\left( \alpha \right)\parallel BC \hfill \cr BC \subset \left( {ABCD} \right) \hfill \cr} \right.\) nên \(\left( \alpha  \right) \cap \left( {ABCD} \right) = QM\) 

và \(QM\parallel BC \,\,\, \left( 2 \right)\)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

\(\left\{ \matrix{
S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \hfill \cr
AB \subset \left( {SAB} \right),C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \hfill \cr
AB\parallel C{\rm{D}} \hfill \cr} \right. \Rightarrow \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = Sx\) và \(S{\rm{x}}\parallel AB\parallel C{\rm{D}}\)

\(MN \cap PQ = I \Rightarrow \left\{ \matrix{
I \in MN \hfill \cr
I \in PQ \hfill \cr} \right.\)

\(MN \subset \left( {SAB} \right) \Rightarrow I \in \left( {SAB} \right),PQ \subset \left( {SC{\rm{D}}} \right) \Rightarrow I \in \left( {SC{\rm{D}}} \right)\)

\( \Rightarrow I \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow I \in Sx\)  

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)