Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 2 trang 65 Toán 11 tập 1 – Cánh Diều: Tính...

Bài 2 trang 65 Toán 11 tập 1 - Cánh Diều: Tính các giới hạn sau: \(\lim \frac{{5n + 1}}{{2n}};\)...

Sử dụng định lí về giới hạn hữu hạn kết hợp với một số giới hạn cơ bản.Định nghĩa dãy số có giới hạn hữu hạn.. Giải chi tiết bài 2 trang 65 SGK Toán 11 tập 1 - Cánh Diều Bài 1. Giới hạn của dãy số. Tính các giới hạn sau: a) (lim frac{{5n + 1}}{{2n}};) b) (lim frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};) c) (lim frac{{sqrt {{n^2} + 5n + 3} }}{{6n + 2}};)d) (lim left( {2 - frac{1}{{{3^n}}}} right);) e) (lim frac{{{3^n} + {2^n}}}{{{{4...

Question - Câu hỏi/Đề bài

Tính các giới hạn sau:

a) \(\lim \frac{{5n + 1}}{{2n}};\)

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng định lí về giới hạn hữu hạn kết hợp với một số giới hạn cơ bản.

Advertisements (Quảng cáo)

Định nghĩa dãy số có giới hạn hữu hạn.

Dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) hay \({u_n} \to a\) khi \(n \to + \infty \) hay \(\lim {u_n} = a\).

Answer - Lời giải/Đáp án

a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)

b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)

c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)

d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\)

e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)

g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)

Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)

Advertisements (Quảng cáo)