Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 4 trang 40 Toán 11 tập 1 – Cánh diều: Thành...

Bài 4 trang 40 Toán 11 tập 1 - Cánh diều: Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào...

Sử dụng công thức tổng quát để giải phương trình hàm số sin . Giải và trình bày phương pháp giải bài 4 trang 40 SGK Toán 11 tập 1 - Cánh diều Bài 4. Phương trình lượng giác cơ bản. Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ (40^circ ) Bắc... Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào

Question - Câu hỏi/Đề bài

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ \(40^\circ \) Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số:\(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365\)

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ảnh sáng mặt trời?

c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng công thức tổng quát để giải phương trình hàm số sin

Answer - Lời giải/Đáp án

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời thì d(t)=12

Khi đó

\(\begin{array}{l}12 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin 0\\ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \\ \Leftrightarrow t = 80 + 182k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < 80 + 182k \le 365\\ \Rightarrow 0 \le k \le 1,56\end{array}\)

Suy ra \(k \in \left\{ {0;1} \right\}\)

Khi đó \(t \in \left\{ {80;262} \right\}\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và 262 trong năm

Advertisements (Quảng cáo)

b) Thành phố A có đúng 9 giờ có ánh sáng mặt trời thì d(t)=9

Khi đó

\(\begin{array}{l}9 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( { - \frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = - 11 + 364k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < - 11 + 364k \le 365\\ \Rightarrow 0 < k \le 1,03\end{array}\)

Suy ra \(k= 1\)

Khi đó \(t= - 11 + 364.1 = 353\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm

c) Thành phố A có đúng 15 giờ có ánh sáng mặt trời thì d(t)=15

Khi đó

\(\begin{array}{l}15 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( {\frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 171 + 364k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < 171 + 364k \le 365\\ \Rightarrow 0 \le k \le 0,53\end{array}\)

Suy ra \(k=0\)

Khi đó \(t= 171 + 364.0 = 171\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm

Advertisements (Quảng cáo)