Tứ phân vị thứ nhất của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?
A. 7.
B. 7,6.
C. 8.
D. 8,6.
Sử dụng công thức tính tứ phân vị thứ nhất theo bảng tần số ghép nhóm.
Advertisements (Quảng cáo)
Gọi \({x_1};{x_2};...;{x_{20}}\) là doanh thu bán hàng của các ngày được xếp theo thứ tự không giảm.
Ta có:
\({x_1},{x_2} \in \begin{array}{*{20}{c}}{\left[ {5;7} \right)}\end{array};{x_3},...,{x_9} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array};{x_{10}},...,{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array};{x_{17}},{x_{18}},{x_{19}} \in \begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array};{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array}\)
Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right)\).
Ta có: \(n = 20;{n_m} = 7;C = 2;{u_m} = 7;{u_{m + 1}} = 9\)
Do \({x_5},{x_6} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 7 + \frac{{\frac{{20}}{4} - 2}}{7}.\left( {9 - 7} \right) \approx 7,9\)
Chọn C.