Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Giải mục 2 trang 35, 36 Toán 11 tập 1 – Chân...

Giải mục 2 trang 35, 36 Toán 11 tập 1 - Chân trời sáng tạo: Có giá trị nào của x để \(sinx = 1, 5\)không?...

Hướng dẫn cách giải/trả lời Hoạt động 2 , Thực hành 2 mục 2 trang 35, 36 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 5. Phương trình lượng giác cơ bản. Có giá trị nào của x để (sinx = 1, 5)không?...

Hoạt động 2

a) Có giá trị nào của x để \(sinx = 1,5\)không?

b) Trong Hình 1, những điểm nào trên đường tròn lượng giác biểu diễn góc lượng giác x có \(sinx = 0,5\)? Xác định số đo của các góc lượng giác đó.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Quan sát hình và dựa vào tính chất \( - 1 \le sinx \le 1\).

Answer - Lời giải/Đáp án

a) Với mọi \(x \in \mathbb{R}\), ta có: \( - 1 \le sinx \le 1\)

Do đó không có giá trị nào của x để \(sinx = 1,5\).

b) Những điểm biểu diễn góc lượng giác có \(sinx = 0,5\) là M và N.

Điểm M biểu diễn cho các góc lượng giác có số đo là \(\frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}.\)

Điểm N biểu diễn cho các góc lượng giác có số đo là \(\frac{{5\pi }}{6} + k2\pi ,k \in \mathbb{Z}.\)


Advertisements (Quảng cáo)

Thực hành 2

Giải các phương trình sau:

\(\begin{array}{l}a)\;sinx = \frac{{\sqrt 3 }}{2}\\b)\;sin(x + {30^o}) = sin(x + {60^o})\end{array}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Nếu \(\left| m \right| \le 1\) thì phương trình:

  • \({\mathop{\rm s}\nolimits} {\rm{inx}} = m \Leftrightarrow \sin x = \sin \alpha \)\( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
  • \(\sin x = \sin {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = {180^o} - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Answer - Lời giải/Đáp án

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

Advertisements (Quảng cáo)