Trên Mặt Trăng, khi một vật được thả rơi tự do, ở giây đầu tiên nó đi được một đoạn dài 80,772 cm. Mỗi giây sau nó đi được một đoạn nhiều hơn đoạn đường đi trong giây ngay trước đó 161,554 cm. Tìm độ dài của đoạn đường đã đi được trong 10 giây của một vật rơi tự do trên Mặt Trăng.
Từ đầu bài, xác định \({u_1},d,n\) và áp dụng công thức \(S = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\) để tính tổng của dãy số này.
Advertisements (Quảng cáo)
Mỗi giây sau nó đi được một đoạn nhiều hơn đoạn đường đi trong giây ngay trước đó 161,554 cm nên ta lập được cấp số cộng với \(d = 161,554\). Ở giây đầu tiên vật đi được một đoạn dài 80,772 cm thì \({u_1} = 80,772\).
Vậy độ dài của đoạn đường đã đi được trong 10 giây của một vật rơi tự do trên Mặt Trăng là \(S = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} = \frac{{10\left( {2.80,772 + 9.161,554} \right)}}{2} = 8077,65\)(cm).