Trả lời - Bài 3.9 trang 74 SGK Toán 11 tập 1 - Cùng khám phá - Bài 2. Giới hạn của hàm số. Cho hàm số \(y = f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}},x :
Cho hàm số \(y = f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}},x
\(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} ({x^3} + 2x - 1)\)
Advertisements (Quảng cáo)
\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 1}}{{x - 1}}\)
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} ({x^3} + 2x - 1) = 2\)
\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{(x - 1).(x + 1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} (x + 1) = 2\).