Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh bằng \(a\) và các cạnh bên đều bằng \(a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(SD\). Chứng minh \(MN \bot SC\).
Chứng minh \(MN//SA\)
Chứng minh \(SA \bot SC\) dựa vào việc tính các cạnh của tam giác \(SAC\)
Advertisements (Quảng cáo)
Vì \(MN//SA\) (tính chất đường trung bình của tam giác)
Do đó, \(\left( {MN,SC} \right) = \left( {SA,SC} \right) = \widehat {CSA}\)
Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(AC = a\sqrt 2 \).
Xét \(\Delta SAC\) có \(SA = SC = a,AC = a\sqrt 2 \)\( \Rightarrow S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2} = {\left( {\sqrt 2 a} \right)^2} = A{C^2}\)
\( \Rightarrow \Delta SAC\) vuông tại \(S\) (theo định lý Pi-ta-go)
\( \Rightarrow SA \bot SC \Rightarrow MN \bot SC\)