Cho tứ diện \(ABCD\) có \(AC = a,BD = 3a\). \(M,N\) lần lượt là trung điểm của \(AD\) và \(BC\). Biết \(AC\) vuông góc với \(BD\), tính \(MN\).
Gọi \(P\) là trung điểm của \(CD\).
Chứng minh \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)
Dựa vào \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)
Dựa vào \(\Delta MNP\) vuông tại \(P\) để tính \(MN\)
Advertisements (Quảng cáo)
Gọi \(P\) là trung điểm của \(CD\)
\( \Rightarrow NP\) là đường trung bình của \(\Delta BCD \Rightarrow NP//BD,NP = \frac{1}{2}BD = \frac{{3a}}{2}\)
Vì \(P\) là trung điểm của \(CD\)
\( \Rightarrow MP\) là đường trung bình của \(\Delta ACD \Rightarrow MP//AC,NP = \frac{1}{2}AC = \frac{a}{2}\)
Vì \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)
Mà \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)\( \Rightarrow \Delta MNP\) vuông tại \(P\)
\( \Rightarrow M{N^2} = M{P^2} + N{P^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{10{a^2}}}{4}\)\( \Rightarrow MN = \frac{{a\sqrt {10} }}{2}\)