Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Lý thuyết Hàm số liên tục – Toán 11 Cùng khám phá:...

Lý thuyết Hàm số liên tục - Toán 11 Cùng khám phá: I. Hàm số liên tục tại một điểm và liên tục trên một khoảng 1...

Lời giải bài tập, câu hỏi - Lý thuyết Hàm số liên tục - SGK Toán 11 Cùng khám phá - Bài 3. Hàm số liên tục. I. Hàm số liên tục tại một điểm và liên tục trên một khoảng...

I. Hàm số liên tục tại một điểm và liên tục trên một khoảng

1. Hàm số liên tục tại 1 điểm

Cho hàm \(y = f(x)\) xác định trên khoảng K, \({x_0} \in K\). Hàm số \(f(x)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\).

Hàm số không liên tục tại \({x_0}\) được gọi là gián đoạn tại điểm đó.

2. Hàm số liên tục trên một khoảng

- Hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;b} \right)\)

Hàm số \(y = f(x)\) được gọi là liên tục trên khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số \(y = f(x)\) được gọi là liên tục trên đoạn \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a),\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)\).

* Nhận xét:

- Đồ thị hàm số liên tục trên một khoảng, đoạn là “đường liền” trên khoảng, đoạn đó.

- Nếu hàm số\(y = f(x)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f(a).f(b)

Advertisements (Quảng cáo)

II. Một số định lý cơ bản

1. Định lý 1

- Hàm số đa thức và hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}},y = c{\rm{osx}}\)liên tục trên \(\mathbb{R}\).

- Các hàm số \(y = \tan {\rm{x}},y = c{\rm{otx,}}y = \sqrt x \) và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

2. Định lý 2

Giả sử hai hàm số \(y = f(x)\) và \(y = g(x)\) liên tục tại điểm \({x_0}\). Khi đó:

a, Các hàm số \(y = f(x) \pm g(x)\) và \(y = f(x).g(x)\) liên tục tại điểm \({x_0}\).

b, Hàm số \(y = \frac{{f(x)}}{{g(x)}}\) liên tục tại điểm \({x_0}\) nếu \(g({x_0}) \ne 0\).

c, Hàm số \(y = f(x)\) liên tục trên khoảng K và \(f(x) \ge 0,\forall x \in K\). Khi đó hàm số \(y = \sqrt {f(x)} \) liên tục trên K.

Advertisements (Quảng cáo)