Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Mục 2 trang 83, 84 Toán 11 tập 1 – Cùng khám...

Mục 2 trang 83, 84 Toán 11 tập 1 - Cùng khám phá: Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác...

Đồ thị hàm số liên tục trên một khoảng là đường liền trên khoảng đó. Gợi ý giải Hoạt động 3, Luyện tập 3 , Hoạt động 4, Luyện tập 4 , Vận dụng - mục 2 trang 83, 84 SGK Toán 11 tập 1 - Cùng khám phá - Bài 3. Hàm số liên tục. Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác định trên \(\left( { - \infty ; + \infty } \right)\) có đồ thị như sau...

Hoạt động 3

Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác định trên \(\left( { - \infty ; + \infty } \right)\) có đồ thị như sau:

Dựa vào đồ thị, hãy dự đoán tính liên tục của các hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) trên \(\left( { - \infty ; + \infty } \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Đồ thị hàm số liên tục trên một khoảng là đường liền trên khoảng đó

Answer - Lời giải/Đáp án

Quan sát đồ thị hàm số \(y = f\left( x \right),y = g\left( x \right)\) ta thấy chúng là một đường nét liền trên \(\left( { - \infty ; + \infty } \right)\) nên hai hàm số đó liên tục trên \(\left( { - \infty ; + \infty } \right)\)


Luyện tập 3

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} + x - 2}}{{x - 1}}\,\,\,khi\,\,x \ne 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,khi\,\,x = 1\end{array} \right.\) trên \(\mathbb{R}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hàm số liên tục trên \(\mathbb{R}\) nếu nó liên tục tại mọi điểm thuộc \(\mathbb{R}\)

Hàm số phân thức hữu tỉ (thương của hai đa thức) liên tục trên từng khoảng xác định của chúng.

Xét tính liên tục của hàm số \(f\left( x \right)\) tại điểm \(x = 1\)

Answer - Lời giải/Đáp án

Tập xác định của hàm số là \(\mathbb{R}\)

+ Trên tập \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\), hàm số \(f\left( x \right) = \frac{{{x^3} + x - 2}}{{x - 1}}\) là phân thức hữu tỉ xác định trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) nên liên tục trên các khoảng này.

+ Khi \(x = 1\), ta có \(f\left( 1 \right) = 2\).

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + x - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 2} \right) = {1^2} + 1 + 2 = 4 \ne f\left( 1 \right)\)

Vậy hàm số \(f\left( x \right)\) không liên tục tại \(x = 1\)

Suy ra hàm số đã cho gián đoạn tại \(x = 1\) hay hàm số \(f\left( x \right)\) không liên tục trên \(\mathbb{R}\)


Hoạt động 4

Cho hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) = \frac{1}{x}\).

a) Xét tính liên tục của \(y = f\left( x \right)\) và \(y = g\left( x \right)\) tại \({x_0} = 1\).

b) Xét tính liên tục của hàm số \(y = f\left( x \right) + g\left( x \right)\) tại \({x_0} = 1\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hàm số liên tại tại điểm \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Tính \(f\left( {{x_0}} \right)\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) rồi so sánh chúng

Tương tự với hàm \(y = g\left( x \right)\) và \(y = f\left( x \right) + g\left( x \right)\)

Answer - Lời giải/Đáp án

a)

+ Hàm số \(y = f\left( x \right) = {x^2}\) có TXĐ là \(\mathbb{R}\)

Với \({x_0} = 1 \Rightarrow f\left( 1 \right) = {1^2} = 1\)

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} {x^2} = {1^2} = 1 = f\left( 1 \right)\). Suy ra, hàm số \(y = f\left( x \right)\) liên tục tại \({x_0} = 1\)

+ Hàm số \(y = g\left( x \right) = \frac{1}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\)

Với \({x_0} = 1 \Rightarrow g\left( 1 \right) = \frac{1}{1} = 1\)

Advertisements (Quảng cáo)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{1}{x} = \frac{1}{1} = 1 = f\left( 1 \right)\). Suy ra, hàm số \(y = f\left( x \right)\) liên tục tại \({x_0} = 1\)

b) Với \({x_0} = 1 \Rightarrow f\left( 1 \right) + g\left( 1 \right) = {1^2} + \frac{1}{1} = 2\)

\(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + \frac{1}{x}} \right) = {1^2} + \frac{1}{1} = 2 = f\left( 1 \right) + g\left( 1 \right)\).

Suy ra, hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \({x_0} = 1\)


Luyện tập 4

Tìm các khoảng trên đó hàm số sau đây là liên tục: \(y = x + \tan x\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là các hàm số liên tục trên khoảng K thì hàm số \(y = f\left( x \right) \pm g\left( x \right)\) cũng liên tục trên khoảng K

Hàm số \(y = \tan x,y = \cot x\) liên tục trên từng khoảng xác định của chúng

Tìm tập xác định của hàm số

Answer - Lời giải/Đáp án

Xét hàm số \(f\left( x \right) = x\) và \(g\left( x \right) = \tan x\)

+ Hàm số \(f\left( x \right) = x\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\mathbb{R}\)

+ Hàm số \(g\left( x \right) = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\) nên hàm số \(g\left( x \right)\) liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right)\)

Do đó, hàm số \(y = f\left( x \right) + g\left( x \right) = x + \tan x\) liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right)\)


Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,khi\,\,x \le 0\\ax + b\,\,khi\,\,0

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hàm số liên tục trên \(\mathbb{R}\) nếu nó liên tục tại mọi điểm thuộc \(\mathbb{R}\)

Dựa tính liên tục tại các điểm \(x = 0;x = 2\) để tìm \(a\) và \(b\)

Answer - Lời giải/Đáp án

Tập xác định của hàm số là \(\mathbb{R}\)

Với \(x

Với \(0

Với \(x > 2\), hàm số \(f\left( x \right) = 4 - x\) là hàm đa thức nên hàm số liên tục trên khoảng \(\left( {2; + \infty } \right)\)

Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại các điểm \(x = 0\) và \(x = 2\)

+ Với \(x = 0 \Rightarrow f\left( 0 \right) = 0 + 1 = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {x + 1} \right) = 0 + 1 = 1\)

\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {ax + b} \right) = a.0 + b = b\)

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow b = 1\) \(\left( 1 \right)\)

+ Với \(x = 2 \Rightarrow f\left( 2 \right) = 4 - 2 = 2\)

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + b} \right) = 2a + b\)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4 - x} \right) = 4 - 2 = 2\)

Để hàm số liên tục tại \(x = 2\) thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2a + b = 2\) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra \(\left\{ \begin{array}{l}b = 1\\2a + b = 2\end{array} \right. \Leftrightarrow a = \frac{1}{2};b = 1\)

Advertisements (Quảng cáo)