Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 35 trang 109 Toán 11 tập 2 – Kết nối tri...

Bài 35 trang 109 Toán 11 tập 2 - Kết nối tri thức: Cho hình chóp \(S. ABCD\) có đáy ABCD là hình chữ nhật, \(AD = a, AB = a\sqrt 2 \)...

Thể tích khối chóp \(V = \frac{1}{3}h. Phân tích và giải bài 35 trang 109 SGK Toán 11 tập 2 - Kết nối tri thức Bài tập cuối năm. Cho hình chóp (S. ABCD) có đáy ABCD là hình chữ nhật, (AD = a, AB = asqrt 2 )...

Question - Câu hỏi/Đề bài

Cho hình chóp \(S.ABCD\) có đáy ABCD là hình chữ nhật, \(AD = a,AB = a\sqrt 2 \). Biết \(SA \bot (ABCD)\) và \(SA = a\sqrt 3 \). Gọi \(M\) là trung điểm của cạnh CD.

a) Chứng minh rằng \(BD \bot (SAM)\).

b) Tính theo a thể tích khối chóp S.ABMD.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thể tích khối chóp \(V = \frac{1}{3}h.S\)

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Xét tam giác ABD vuông tại A có \(\tan \widehat {ADB} = \frac{{AB}}{{AD}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \)

Xét tam giác ADM vuông tại D có \(\tan \widehat {AMD} = \frac{{AD}}{{DM}} = \frac{a}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 2 \)

Do đó \(\widehat {ADB} = \widehat {AMD}\)

Mà \(\widehat {ADB} + \widehat {EDM} = {90^0}\) nên \(\widehat {AMD} + \widehat {EDM} = {90^0} \Rightarrow \widehat {DEM} = {90^0} \Rightarrow AM \bot BD\)

Ta có \(AM \bot BD,SA \bot BD \Rightarrow BD \bot \left( {SAM} \right)\)

b) Vì tứ giác ABMD là hình thang vuông nên

\({S_{ABMD}} = \frac{{\left( {DM + AB} \right)AD}}{2} = \frac{{\left( {\frac{{a\sqrt 2 }}{2} + a\sqrt 2 } \right)a}}{2} = \frac{{3{a^2}\sqrt 2 }}{4}\)

Vậy thể tích khối chóp S.ABMD là \(V = \frac{1}{3}SA.{S_{ABMD}} = \frac{1}{3}.a\sqrt 3 .\frac{{3{a^2}\sqrt 2 }}{4} = \frac{{{a^3}\sqrt 6 }}{4}\)

Advertisements (Quảng cáo)