Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 4.46 trang 103 Toán 11 tập 1 – Kết nối tri...

Bài 4.46 trang 103 Toán 11 tập 1 - Kết nối tri thức: Cho tứ diện ABCD. Trên cạnh AB lấy điểm M sao cho BM = 3AM...

Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong (P) thì a song song với (P). Giải và trình bày phương pháp giải bài 4.46 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức Bài tập cuối chương 4. Cho tứ diện ABCD. Trên cạnh AB lấy điểm M sao cho BM = 3AM. Mặt phẳng (P) đi qua M song song với hai đường thẳng AD và BC...

Question - Câu hỏi/Đề bài

Cho tứ diện ABCD. Trên cạnh AB lấy điểm M sao cho BM = 3AM. Mặt phẳng (P) đi qua M song song với hai đường thẳng AD BC.

a) Xác định giao điểm K của mặt phẳng (P) với đường thẳng CD.

b) Tính tỉ số \(\frac{{KC}}{{CD}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong (P) thì a song song với (P).

Answer - Lời giải/Đáp án

a) Qua M kẻ MH// BC, MI // AD.

mp(P) đi qua M song song với hai đường thẳng AD BC.

Suy ra mp(P) chứa MH MI.

Ta có:

\(\begin{array}{l}\left( {ABC} \right) \cap (P) = MH\\\left( {ABC} \right) \cap (BCD) = BC\end{array}\)

Advertisements (Quảng cáo)

\( \Rightarrow \)MH//BC.

Suy ra, giao tuyến của (P) và (BCD) song song với BC MH.

Qua I kẻ IK // BC (K thuộc CD)

Vậy giao điểm của (P) CD K.

b) Ta có:

\(\begin{array}{l}\left( {ABD} \right) \cap (P) = MI\\\left( {ABD} \right) \cap (ACD) = AD\\(P) \cap (ACD) = HK\end{array}\)

\( \Rightarrow \)MI//AD, HK //MI

Tứ giác MHKI có: MH // KI, MI // HK

Suy ra MHKI là hình bình hành \( \Rightarrow \) MH = KI.

Xét tam giác ABCMH // BC, BM = 3AM

Suy ra BC = 4MH suy ra BC = 4KI.

Xét tam giác BCD IK // BC, BC = 4KI suy ra \(\frac{{KC}}{{CD}} = \frac{3}{4}\).

Advertisements (Quảng cáo)