Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng...

Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao, Tìm các giới hạn sau...

Tìm các giới hạn sau :. Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao - Bài 3. Dãy số có giới hạn vô cực

Bài 17. Tìm các giới hạn sau :

a.  \(\lim \left( {3{n^3} - 7n + 11} \right)\)

b.  \(\lim \sqrt {2{n^4} - {n^2} + n + 2} \)

c.  \(\lim \root 3 \of {1 + 2n - {n^3}} \)

d.  \(\lim \sqrt {{{2.3}^n} - n + 2} .\)

a.

\(\eqalign{
& \lim \left( {3{n^3} - 7n + 11} \right) = \lim {n^3}\left( {3 - {7 \over {{n^2}}} + {{11} \over {{n^3}}}} \right) = + \infty \cr
& \text{ vì }\,{{\mathop{\rm limn}\nolimits} ^3} = + \infty \text{ và }\lim \left( {3 - {7 \over {{n^2}}} + {{11} \over {{n^3}}}} \right) = 3 > 0 \cr} \)

b.

Advertisements (Quảng cáo)

\(\eqalign{
& \lim \sqrt {2{n^4} - {n^2} + n + 2} = \lim {n^2}.\sqrt {2 - {1 \over {{n^2}}} + {1 \over {{n^3}}} + {2 \over {{n^4}}}} = + \infty \cr
& \text{ vì }\;\lim {n^2} = + \infty  \text{ và }\lim \sqrt {2 - {1 \over {{n^2}}} + {1 \over {{n^3}}} + {2 \over {{n^4}}}} = \sqrt 2 > 0 \cr} \)

c.

\(\eqalign{
& \lim \root 3 \of {1 + 2n - {n^3}} = \lim n\root 3 \of {{1 \over {{n^3}}} + {2 \over {{n^2}}} - 1} = - \infty \cr
& \text{ vì }\lim n = + \infty \text{ và }\lim \root 3 \of {{1 \over {{n^3}}} + {2 \over {{n^2}}} - 1} = - 1 < 0 \cr} \)

d.

\(\sqrt {{{2.3}^n} - n + 2} = {\left( {\sqrt 3 } \right)^n}\sqrt {2 - {n \over {{3^n}}} + {2 \over {{3^n}}}} \) với mọi n.

Vì \(\lim {n \over {{3^n}}} = 0\) (xem bài tập 4) và  \(\lim {2 \over {{3^n}}} = 0\)

Nên  \(\lim \sqrt {2 - {n \over {{3^n}}} + {2 \over {{3^n}}}} = \sqrt 2 > 0\)

Ngoài ra  \(\lim {\left( {\sqrt 3 } \right)^n} = + \infty \)

Do đó  \(\lim \sqrt {{{2.3}^n} - n + 2} = + \infty \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)