Bài 19. Tổng của một cấp số nhân lùi vô hạn là \({5 \over 3},\) tổng ba số hạng đầu tiên của nó là \({{39} \over {25}}\) . Tìm số hạng đầu và công bội của cấp số đó.
Ta có:
\(\eqalign{
& S = {{{u_1}} \over {1 - q}} = {5 \over 3}\,\,\,\left( 1 \right) \cr
& {u_1} + {u_2} + {u_3} = {u_1}\left( {1 + q + {q^2}} \right) = {{39} \over {25}}\cr
& \Rightarrow {{{u_1}} \over {1 - q}}\left( {1 - {q^3}} \right) = {{39} \over {25}}\,\,\left( 2 \right) \cr} \)
Advertisements (Quảng cáo)
Thay (1) vào (2) ta được :\({5 \over 3}\left( {1 - {q^3}} \right) = {{39} \over {25}} \Rightarrow q = {2 \over 5}\)
Từ (1) suy ra \({u_1} = 1\) .
Vậy \({u_1} = 1,q = {2 \over 5}\)