Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 35 trang 83 Đại số và Giải tích 11 Nâng cao,...

Câu 35 trang 83 Đại số và Giải tích 11 Nâng cao, Xác suất bắn trúng hồng tâm của một người bắn cung là 0,2. Tính xác suất để trong ba lần bắn độc lập...

Xác suất bắn trúng hồng tâm của một người bắn cung
là 0,2. Tính xác suất để trong ba lần bắn độc lập :
. Câu 35 trang 83 SGK Đại số và Giải tích 11 Nâng cao - Bài 5. Các quy tắc tính xác suất

Bài 35. Xác suất bắn trúng hồng tâm của một người bắn cung là \(0,2\). Tính xác suất để trong ba lần bắn độc lập :

a. Người đó bắn trúng hồng tâm đúng một lần ;

b. Người đó bắn trúng hồng tâm ít nhất một lần.

a. Gọi \(A_i\) là biến cố “Người bắn cung bắn trúng hồng tâm ở lần thứ \(i\)” (\(i = 1,2,3\)), ta có \(P(A_i) = 0,2\). Gọi \(K\) là biến cố “Trong ba lần bắn có duy nhất một lần người đó bắn trúng hồng tâm”, ta có:

\(K = {A_1}\overline {{A_2}} \overline {{A_3}} \cup \overline {{A_1}} {A_2}\overline {{A_3}} \cup \overline {{A_1}} \overline {{A_2}} {A_3}\)

Advertisements (Quảng cáo)

Theo quy tắc cộng xác suất, ta có:

\(P\left( K \right) = P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) + P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) + P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right)\)

Theo quy tắc nhân xác suất, ta tìm được :

\(P\left( {{A_1}\overline {{A_2}} \overline {{A_3}} } \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right)P\left( {\overline {{A_3}} } \right) = 0,2.0,8.0,8 = 0,128.\)

Tương tự \(P\left( {\overline {{A_1}} {A_2}\overline {{A_3}} } \right) = P\left( {\overline {{A_1}} \overline {{A_2}} {A_3}} \right) = 0,128\)

Vậy \(P(K) = 3.0,128 = 0,384\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)