Bài 4. Cho dãy số (un) với \({u_n} = {n \over {{3^n}}}\)
a. Chứng minh rằng \({{{u_{n + 1}}} \over {{u_n}}} \le {2 \over 3}\) với mọi n.
b. Bằng phương pháp qui nạp, chứng minh rằng \(0 < {u_n} \le {\left( {{2 \over 3}} \right)^n}\) với mọi n.
c. Chứng minh rằng dãy số (un) có giới hạn 0.
a. Ta có:
\(\eqalign{
& {{{u_{n + 1}}} \over {{u_n}}} = {{n + 1} \over {{3^{n + 1}}}}:{n \over {{3^n}}} = {1 \over 3}.{{n + 1} \over n} \cr
& = {1 \over 3}\left( {1 + {1 \over n}} \right) \le {2 \over 3},\forall n \ge 1. \cr} \)
b. Rõ ràng \(u_n> 0, ∀n ≥ 1\).
Ta chứng minh \({u_n} \le {\left( {{2 \over 3}} \right)^n}\,\,\,\,\left( 1 \right)\)
+) Với \(n = 1\) ta có \({u_1} = {1 \over 3} \le {2 \over 3}\)
Advertisements (Quảng cáo)
Vậy (1) đúng với \(n = 1\)
+) Giả sử (1) đúng với \(n = k\), tức là ta có :
\({u_k} \le {\left( {{2 \over 3}} \right)^k}\)
Khi đó \({u_{k + 1}} \le {2 \over 3}{u_k}\) (theo câu a)
\( \Rightarrow {u_{k + 1}} \le {2 \over 3}.{\left( {{2 \over 3}} \right)^k} = {\left( {{2 \over 3}} \right)^{k + 1}}\)
Vậy (1) đúng với \(n = k + 1\) nên (1) đúng với mọi \(n\).
c. Ta có:
\(0 < {u_n} \le {\left( {{2 \over 3}} \right)^n} \Rightarrow \left| {{u_n}} \right| \le {\left( {{2 \over 3}} \right)^n}\)
Mà \(\lim {\left( {{2 \over 3}} \right)^n} = 0 \Rightarrow \lim \left| {{u_n}} \right| = 0 \Rightarrow \lim {u_n} = 0\)