Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 4.4 trang 133 sách bài tập Đại số và Giải tích...

Câu 4.4 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao: Chứng minh...

Chứng minh. Câu 4.4 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 1: Dãy số có giới hạn 0

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi

\(\left\{ \matrix{
{u_1} = {1 \over 4} \hfill \cr
{u_{n + 1}} = u_n^2 + {{{u_n}} \over 2}\,\,\,\,\,voi\,\,moi\,\,\,n \hfill \cr} \right.\)

Chứng minh rằng

a) \(0 < {u_n} \le {1 \over 4}\) với mọi n             b) \({{{u_{n + 1}}} \over {{u_n}}} \le {3 \over 4}\)với mọi n

Từ đó suy ra \(\lim {u_n} = 0\)

a) \(0 < {u_n} \le {1 \over 4}\) với mọi n     (1)

+) Với  n = 1 \({u_1} = {1 \over 4}\), (1) đúng

Advertisements (Quảng cáo)

+) Giả sử (1) đúng với n = k ta có \(0<u_k\le {1 \over 4}\)

Ta chứng minh (1) đúng với n = k + 1

\({u_{k + 1}} = u_k^2 + {{{u_k}} \over 2} = {u_k}.\left( {{u_k} + {1 \over 2}} \right)  \le {1 \over 4}\)

\(\left( {do\,\,0 < {u_k} \le {1 \over 4}} \right)\)

Vậy (1) đã được chứng minh.

b) \({{{u_{n + 1}}} \over {{u_n}}} = {u_n} + {1 \over 2} \le {1 \over 4} + {1 \over 2} = {3 \over 4}\) với mọi n

Từ đó suy ra

\(\eqalign{
& {u_2} \le {3 \over 4}{u_1} \cr
& {u_3} \le {3 \over 4}{u_2} \le {\left( {{3 \over 4}} \right)^2}{u_1},... \cr
& 0 \le {u_n} < {\left( {{3 \over 4}} \right)^{n - 1}}{u_1} = {1 \over 4}{\left( {{3 \over 4}} \right)^{n - 1}} \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)