Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 47 trang 48 Đại số và Giải tích 11 Nâng cao,...

Câu 47 trang 48 Đại số và Giải tích 11 Nâng cao, Giải các phương trình sau...

Giải các phương trình sau :. Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao - Câu hỏi và bài tập ôn tập chương I

Bài 47. Giải các phương trình sau :

a.  \(\sin 2x + {\sin ^2}x = {1 \over 2}\)

b.  \(2{\sin ^2}x + 3\sin x\cos x + {\cos ^2}x = 0\)

c.  \({\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2}\)

Ta có:

\(\eqalign{
& \sin 2x + {\sin ^2}x = {1 \over 2} \cr
& \Leftrightarrow \sin 2x + {1 \over 2}\left( {1 - \cos 2x} \right) = {1 \over 2} \cr
& \Leftrightarrow \sin 2x - {1 \over 2}\cos 2x = 0 \cr
& \Leftrightarrow \tan 2x = {1 \over 2} \cr
& \Leftrightarrow 2x = \alpha + k\pi \,\text{ với }\,\tan \alpha = {1 \over 2} \cr
& \Leftrightarrow x = {\alpha \over 2} + k{\pi \over 2},\,k \in\mathbb Z \cr} \)

b.\(x = {\pi \over 2} + k\pi \) không là nghiệm phương trình.

Advertisements (Quảng cáo)

Chia hai vế phương trình cho \({\cos ^2}x\) ta được :

\(\eqalign{& 2{\tan ^2}x + 3\tan x + 1 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = - {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr & \left( {\text{ với }\,\tan \alpha = - {1 \over 2}} \right) \cr} \)

c. Ta có:

\(\eqalign{
& {\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr
& \Leftrightarrow {\sin ^2}{x \over 2} + 2\sin {x \over 2}\cos {x \over 2} - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr} \) 

Với \(x\) mà \(\cos {x \over 2} = 0\) không là nghiệm phương trình.

Chia hai vế phương trình cho \({\cos ^2}{x \over 2}\) ta được :

\(\eqalign{& {\tan ^2}{x \over 2} + 2\tan {x \over 2} - 2 = {1 \over 2}\left( {1 + {{\tan }^2}{x \over 2}} \right) \cr & \Leftrightarrow {\tan ^2}{x \over 2} + 4\tan {x \over 2} - 5 = 0 \cr & \Leftrightarrow \left[ {\matrix{{\tan {x \over 2} = 1} \cr {\tan {x \over 2} = - 5} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 4} + k\pi } \cr {{x \over 2} = \alpha + k\pi } \cr} } \right.\,\left( {\text{ với }\,\tan \alpha = - 5} \right) \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k2\pi } \cr {x = 2\alpha + k2\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)