1. Cho điểm \(O\) và số \(k \ne 0\). Phép biến hình biến mỗi điểm \(M\) thành điểm \(M’\) sao cho \(\overrightarrow{OM’} = k\) \(\overrightarrow{OM}\), được gọi là phép vị tự tâm \(O\), tỉ số \(k\)
Phép vị tự tâm \(O\), tỉ số \(k\) và thường được kí hiệu là \({V_{(O,k)}}^{}\)
2. Phép vị tự biến tâm vị tự thành chính nó
3. Khi \(k=1\), phép vị tự là phép đồng nhất
Khi \(k = -1\), phép vị tự là phép đối xứng qua tâm vị tự
4. \(M’\) = \({V_{(O,k)}}^{} (M) ⇔ M =\) \({V_{(O,\frac{1}{k})}} (M’)\)
5. Nếu phép vị tự tâm \(O\) tỉ số \(k\) biến hai điểm \(M, N\) tùy ý theo thứ tự thành \(M’, N’\) thì \(\overrightarrow{M’N’}\) =\( k \overrightarrow{MN}\) và \(M’N’ = |k| MN\)
Advertisements (Quảng cáo)
6. Phép vị tự tỉ số \(k\) có các tính chất:
a) Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy
b) Biến đường thẳng thành đường thẳng song song với nó, biến tia thành tia, biến đoạn thẳng có độ dài bằng \(a\) thành đoạn thẳng có độ dài bằng \(|k| a\)
c) Biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là \(|k|\), biến góc thành góc bằng nó
d) Biến đường trong bán kình R thành đường tròn bán kính \(|k|R\).