Câu hỏi/bài tập:
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = {x^3} - 3{\rm{x}} + 2\).a) \(y’ = 3{{\rm{x}}^2} - 3\).b) \(y’ = 0\) khi \(x = - 1,x = 1\).c) \(y’ > 0\) khi \(x \in \left( { - 1;1} \right)\) và \(y’ < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).d) Giá trị cực đại của hàm số là ${{f}_{C}}=0$.
Lập bảng biến thiên của hàm số \(y = f\left( x \right)\), từ đó xác định các khoảng đơn điệu, cực trị của hàm số \(y = f\left( x \right)\).
Hàm số có tập xác định là \(\mathbb{R}\).
Advertisements (Quảng cáo)
Ta có:
\(y’ = 3{{\rm{x}}^2} - 3\). Vậy a) đúng.
\(y’ = 0\) khi \(x = - 1,x = 1\). Vậy b) đúng.
Bảng biến thiên của hàm số:
Vậy hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - 1;1} \right)\). Vậy c) sai.
Hàm số đạt cực đại tại \(x = - 1\). Khi đó giá trị cực đại ${{f}_{CĐ}}=4$. Vậy d) sai.
a) Đ. b) Đ. c) S. d) S.