Trang chủ Lớp 12 SBT Toán 12 - Cánh diều Bài 17 trang 13 SBT toán 12 – Cánh diều: Trong mỗi...

Bài 17 trang 13 SBT toán 12 - Cánh diều: Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S)...

Lập bảng biến thiên của hàm số \(y = f\left( x \right)\), từ đó xác định các khoảng đơn điệu. Phân tích và giải Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều - Bài 1. Tính đơn điệu của hàm số . Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = {x^3} - 3{\rm{x}} + 2\).a) \(y’ = 3{{\rm{x}}^2} - 3\).b) \(y’ = 0\) khi \(x = - 1,x = 1\).c) \(y’ > 0\) khi \(x \in \left( { - 1;1} \right)\) và \(y’ < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).d) Giá trị cực đại của hàm số là ${{f}_{C}}=0$.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Lập bảng biến thiên của hàm số \(y = f\left( x \right)\), từ đó xác định các khoảng đơn điệu, cực trị của hàm số \(y = f\left( x \right)\).

Answer - Lời giải/Đáp án

Hàm số có tập xác định là \(\mathbb{R}\).

Advertisements (Quảng cáo)

Ta có:

\(y’ = 3{{\rm{x}}^2} - 3\). Vậy a) đúng.

\(y’ = 0\) khi \(x = - 1,x = 1\). Vậy b) đúng.

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - 1;1} \right)\). Vậy c) sai.

Hàm số đạt cực đại tại \(x = - 1\). Khi đó giá trị cực đại ${{f}_{CĐ}}=4$. Vậy d) sai.

a) Đ. b) Đ. c) S. d) S.

Advertisements (Quảng cáo)