Trang chủ Lớp 12 SBT Toán 12 - Cánh diều Bài 29 trang 17 SBT toán 12 – Cánh diều: Giá trị...

Bài 29 trang 17 SBT toán 12 - Cánh diều: Giá trị lớn nhất của hàm số y = √ 5 - 4x trên đoạn [ - 1...

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\): Bước 1. Lời giải Giải bài 29 trang 17 sách bài tập toán 12 - Cánh diều - Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Giá trị lớn nhất của hàm số (y = sqrt {5 - 4x} ) trên đoạn (left[ { - 1;

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4x} \) trên đoạn \(\left[ { - 1;1} \right]\) bằng:

A. 9.

B. 3.

C. 1.

D. 0.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Advertisements (Quảng cáo)

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Answer - Lời giải/Đáp án

Ta có: \(y’ = \frac{{{{\left( {5 - 4x} \right)}^\prime }}}{{2\sqrt {5 - 4x} }} = \frac{{ - 4}}{{2\sqrt {5 - 4x} }} = \frac{{ - 2}}{{\sqrt {5 - 4x} }} < 0,\forall x \in \left[ { - 1;1} \right]\)

\(y\left( { - 1} \right) = 3;y\left( 1 \right) = 1\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = 3\) tại \({\rm{x}} = - 1\)

Chọn B.

Advertisements (Quảng cáo)