Câu hỏi/bài tập:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị có đường tiệm cận ngang như Hình 10. Hàm số \(y = f\left( x \right)\) có thể là hàm số nào trong các hàm số sau?
A. \(f\left( x \right) = \frac{{3{{\rm{x}}^2}}}{{{x^2} + x + 1}}\).
B. \(f\left( x \right) = \frac{{2{{\rm{x}}^2}}}{{{x^2} + x + 1}}\).
C. \(f\left( x \right) = \frac{{{{\rm{x}}^2}}}{{{x^2} + x + 1}}\).
D. \(f\left( x \right) = \frac{{{{\rm{x}}^2}}}{{3{x^2} + x + 1}}\).
Advertisements (Quảng cáo)
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Dựa vào đồ thị hàm số ta có \(y = 3\) là đường tiệm cận ngang.
Xét hàm số: \(f\left( x \right) = \frac{{3{{\rm{x}}^2}}}{{{x^2} + x + 1}}\). Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{{\rm{x}}^2}}}{{{x^2} + x + 1}} = 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{{\rm{x}}^2}}}{{{x^2} + x + 1}} = 3\).
Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số \(f\left( x \right) = \frac{{3{{\rm{x}}^2}}}{{{x^2} + x + 1}}\).
Chọn A.