Trang chủ Lớp 12 SBT Toán 12 - Kết nối tri thức Bài 2.21 trang 49 SBT Toán 12 – Kết nối tri thức:...

Bài 2.21 trang 49 SBT Toán 12 - Kết nối tri thức: Cho hình chóp tứ giác đều S. ABCD có chiều cao bằng 5 và độ dài cạnh đáy bằng 4...

Hướng dẫn cách giải/trả lời - Bài 2.21 trang 49 sách bài tập toán 12 - Kết nối tri thức - Bài 7. Hệ trục tọa độ trong không gian. Cho hình chóp tứ giác đều \(S. ABCD\) có chiều cao bằng 5 và độ dài cạnh đáy bằng 4. Hãy xác định tọa độ các điểm \(S, A, B, C...

Question - Câu hỏi/Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao bằng 5 và độ dài cạnh đáy bằng 4. Hãy xác định tọa độ các điểm \(S,A,B,C,D\) đối với hệ tọa độ \(Oxyz\) có gốc \(O\) trùng với tâm của hình vuông \(ABCD\), tia \(Ox\) chứa \(B\), tia \(Oy\) chứa \(C\) và tia \(Oz\) chứa \(S\).

Lập hệ trục tọa độ theo giả thiết và xác định tọa độ từng điểm.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có \(S\) thuộc tia \(Oz\) và \(OS = 5\) nên \(S\left( {0;0;5} \right)\).

Do \(ABCD\) là hình vuông cạnh \(4\) nên \(OA = OB = OC = OD = 2\sqrt 2 \).

Ta có \(B\) thuộc tia \(Ox\) và \(OB = 2\sqrt 2 \) suy ra \(B\left( {2\sqrt 2 ;0;0} \right)\); \(D\) thuộc tia đối của tia \(Ox\) và \(OD = 2\sqrt 2 \) suy ra \(D\left( { - 2\sqrt 2 ;0;0} \right)\).

Tương tự có \(C\) thuộc tia \(Oy\) và \(OC = 2\sqrt 2 \) suy ra \(C\left( {0;2\sqrt 2 ;0} \right)\); \(A\) thuộc tia đối của tia \(Oy\) và \(OA = 2\sqrt 2 \) suy ra \(A\left( {0; - 2\sqrt 2 ;0} \right)\).

Vậy \(S\left( {0;0;5} \right)\), \(A\left( {0; - 2\sqrt 2 ;0} \right)\), \(B\left( {2\sqrt 2 ;0;0} \right)\), \(C\left( {0;2\sqrt 2 ;0} \right)\) và \(D\left( { - 2\sqrt 2 ;0;0} \right)\).

Advertisements (Quảng cáo)