Cho hình tứ diện \(ABCD\), chứng minh rằng:
\(\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} \).
Advertisements (Quảng cáo)
Bắt đầu biến đổi từ vế trái từng bước suy ra điều phải chứng minh.
\(\begin{array}{l}\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {CB} + \overrightarrow {AD} + \overrightarrow {DB} } \right) = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\left( {\overrightarrow {CB} + \overrightarrow {DB} } \right)\\ = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\left( {\overrightarrow {CD} + \overrightarrow {DB} + \overrightarrow {DB} } \right) = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {CD} + \frac{1}{2} \cdot 2\overrightarrow {DB} \\ = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} .\end{array}\)