Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Đề 2 trang 225 SBT Giải tích 12: Chứng minh rằng đồ...

Đề 2 trang 225 SBT Giải tích 12: Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị....

1) Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị. Xác định m để một trong những điểm cực trị đó thuộc trục Ox.. Đề 2 trang 225 Sách bài tập (SBT) Giải tích 12 - Đề tự kiểm tra giải tích 12

ĐỀ 2.

Câu 1 trang 225 sách bài tập (SBT) – Giải tích 12 (4,5 điểm)

Cho hàm số  \(y =  - {1 \over 3}{x^3} + {x^2} + m - 1\)

1) Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị. Xác định m để một trong những điểm cực trị đó thuộc trục Ox.

2) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m = {1 \over 3}\)

3) Viết phương trình tiếp tuyến với (C) , biết rằng tiếp tuyến đó vuông góc với đường thẳng \(y = {1 \over 3}x - 2\)

4) Tính diện tích hình phẳng giới hạn bởi (C) , trục hoành và hai đường thẳng x = 0 và x = 2.

Hướng dẫn làm bài

1) \(y’ = - {x^2} + 2x;y’ = 0 \Leftrightarrow \left[ {\matrix{{x = 0} \cr {x = 2} \cr} } \right.\)

Ta có y’ > 0 với \(x \in (0;2)\) và y’ < 0 khi x thuộc các khoảng \(( - \infty ;0),(2; + \infty )\). Vậy với mọi m, đồ thị của hàm số luôn có điểm cực tiểu (0; m – 1) và điểm cực đại \((2;m + {1 \over 3})\). Một trong các điểm cực trị nằm trên trục Ox khi và chỉ khi hoặc \(m + {1 \over 3} = 0 \Leftrightarrow m =  - {1 \over 3}\)  hoặc   \(m – 1 = 0  \Leftrightarrow  m = 1.\)

2) Với \(m = {1 \over 3}\) , ta có  \(y =  - {1 \over 3}{x^3} + {x^2} - {2 \over 3}\)

3) Hệ số góc của tiếp tuyến là  -3. Hoành độ tiếp điểm thỏa mãn phương trình 

\( - {\rm{ }}{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\Rightarrow  \left[ {\matrix{{{x_1} = - 1} \cr {{x_2} = 3} \cr} } \right.\)

Các tung độ của tiếp điểm tương ứng là \({y_1} = {2 \over 3};{y_2} =  - {2 \over 3}\)

Vậy ta có hai tiếp tuyến  \(y =  - 3x - {7 \over 3}\)  và  \(y =  - 3x + {{25} \over 3}\)

4) Vì I(1; 0) là tâm đối xứng của (C) nên hình phẳng đã cho gồm hai hình đối xứng với nhau qua điểm I (1; 0) . Vậy : \(S = 2\int\limits_0^1 {({1 \over 3}{x^3} - {x^2} + {2 \over 3})dx = {5 \over 6}} \) (đơn vị thể tích)

Câu 2 trang 225 sách bài tập (SBT) – Giải tích 12 (3 điểm)

1) Giải phương trình \({3^{{x \over 5}}} + {3^{{{x - 10} \over {10}}}} = 84\)

2) Giải bất phương trình \({\log _{\sqrt 2 }}(3 - 2x) > 1\)

Hướng dẫn làm bài

1) Đặt \({3^{{x \over {10}}}} = t(t > 0)\) , ta có:

\({t^2} + {t \over 3} = 84 \Leftrightarrow  3{t^2} + t - 252 = 0 \Leftrightarrow \left[ {\matrix{{t = 9} \cr {t = - 9{1 \over 3}(l)} \cr} } \right.\)

Như vậy  \({3^{{x \over {10}}}} = {3^2} \Leftrightarrow  x = 20\)

Advertisements (Quảng cáo)

2) Điều kiện: \(3 - 2x > 0 \Leftrightarrow  x < {3 \over 2}\)

Bất phương trình đã cho tương đương với  \(3 - 2x > \sqrt 2 \)

\(\Leftrightarrow x < {{3 - \sqrt 2 } \over 2}\)  (thỏa mãn điều kiện)

Câu 3 trang 225 sách bài tập (SBT) – Giải tích 12  (2,5 điểm)

1) Tính tích phân   \(\int\limits_0^3 {{{\sqrt {x + 1}  + 2} \over {\sqrt {x + 1}  + 3}}} dx\)       (đặt \(t = \sqrt {x + 1} \))

2) Xác định tập hợp các điểm biểu diễn số phức z trên mặt phẳng tọa độ thỏa mãn điều kiện:

a) \(|z + 1| = |z - i|\)                      b) \(|z{|^2} + 3z + 3\overline z  = 0\)

Hướng dẫn làm bài

1) Đặt \(t = \sqrt {x + 1} \Rightarrow  {t^2} = x + 1\) . Do đó, \(dx = 2tdt\)

Khi x = 0 thì t = 1, khi x = 3 thì t = 2.

Vậy  \(I = \int\limits_1^2 {{{(t + 2).2tdt} \over {t + 3}} = } \int\limits_1^2 {(2t - 2 + {6 \over {t + 3}})dt = 1 + 6\ln {5 \over 4}} \)

2) a) Giả sử \(z = x + yi\). Ta có:  \(|x + 1 + yi| = |x + (y - 1)i|\)

\( \Leftrightarrow |(x + 1) + yi{|^2} = |x + (y - 1)i{|^2}\)

\( \Leftrightarrow {(x + 1)^2} + {y^2} = {x^2} + {(y - 1)^2}\)

\(\Leftrightarrow {x^2} + 1 + 2x + {y^2} = {x^2} + {y^2} + 1 - 2y\)

\(\Leftrightarrow  2x = -2y \,\,\,\,\,\, \Leftrightarrow  y = -x\)

Trên mặt phẳng tọa độ, đó là đường phân giác của góc phần tư thứ hai và thứ tư.

Cách 2. Vế phải là khoảng cách từ điểm biểu diễn z tới điểm biểu diễn \({z_0} = 0 + i\), vế trái là khoảng cách từ điểm biểu diễn z tới điểm biểu diễn \({z_1} =  - 1 + 0i\) . Vậy phải tìm các điểm cách đều hai điểm biểu diễn z0 và z1

b) Ta có: \(|x + yi{|^2} + 3(x + yi) + 3(x - yi) = 0\)

\(\Leftrightarrow {x^2} + {y^2} + 6x = 0 \Leftrightarrow  {(x + 3)^2} + {y^2} = 9\)

Trên mặt phẳng tọa độ, đó là tập hợp các điểm thuộc đường tròn bán kính bằng 3 và tâm là điểm (-3; 0)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: