Một trang sách có dạng hình chữ nhật với diện tích là 384 cm². Sau khi để lề trên và lề dưới đều là 3 cm, để lề trái và lề phải đều là 2 cm. Phần còn lại của trang sách được in chữ. Kích thước tối ưu của trang sách là bao nhiêu để phần in chữ trên trang sách có diện tích lớn nhất?
Phân tích đề bài
Tìm các mối quan hệ trong bài
Lập phương trình và giải
Giả sử chiều dài của trang sách là x và chiều rộng là y. Theo đề bài, diện tích của trang sách là:
$xy~=~384~cm{}^\text{2}$
Advertisements (Quảng cáo)
Khi để lề trên và lề dưới đều là 3 cm, lề trái và lề phải đều là 2 cm thì diện tích phần in chữ sẽ là:
\(\left( {x - 2.3} \right)\left( {y - 2.2} \right)\; = \;\left( {x - 6} \right)\left( {y - 4} \right)\)
Ta có: \(x = \frac{{384}}{y}\) (1)
Thay x vào phương trình \(\left( {x - 6} \right)\left( {y - 4} \right)\) ta thu được \(\left( {x - 6} \right)\left( {\frac{{384}}{x} - 4} \right)\)
\(f\left( x \right) = \;\left( {x - 6} \right)\left( {\frac{{384}}{x} - 4} \right)\)
$\to f\left( x \right)=-4+\left( \frac{2304}{{{x}^{2}}} \right)$
$f\left( x \right)=0\to -4+\left( \frac{2304}{{{x}^{2}}} \right)=0\to x=24$
Thế vào (1): \(x = 24 \to y = 16\)
Vậy kích thước của trang sách có chiều dài 24 cm, chiều rộng 16 cm thì phần in chữ trên trang sách có diện tích lớn nhất