Trang chủ Lớp 12 SGK Toán 12 - Cánh diều Bài 8 trang 47 Toán 12 tập 1 – Cánh diều: Tìm...

Bài 8 trang 47 Toán 12 tập 1 - Cánh diều: Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau...

Xét phương trình với số trong ngoặc So sánh và đưa ra kết quả. Phân tích và giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều Bài tập cuối chương 1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau...

Question - Câu hỏi/Đề bài

Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau:

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\);

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\);

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\);

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét phương trình với số trong ngoặc

So sánh và đưa ra kết quả

Answer - Lời giải/Đáp án

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\)

Tìm điểm cực trị: \(f’\left( x \right) = 0 \to 6{x^2} - 6 = 0 \to x = - 1,1\)

So sánh giá trị hàm số tại các điểm cực trị và hai đầu mút của đoạn:

\(f\left( { - 1} \right) = 2{( - 1)^3} - 6\left( { - 1} \right) = - 2 + 6 = 4\)

\(f\left( 1 \right) = 2{(1)^3} - 6\left( 1 \right) = 2 - 6 = - 4\)

Advertisements (Quảng cáo)

\(f\left( 3 \right) = 2{(3)^3} - 6\left( 3 \right) = 54 - 18 = 36\)

Vậy GTNN của hàm số trên đoạn \(\left[ { - 1;3} \right]\) là \( - 4\) (tại \(x = 1\)), và GTLN là 36 (tại \(x = 3\))

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 1 \right) = \frac{{{1^2} + 3.1 + 6}}{{1 + 2}} = \frac{{10}}{3};f\left( 5 \right) = \frac{{{5^2} + 3.5 + 6}}{{5 + 2}} = \frac{{46}}{7}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {1;5} \right]\) là \(\frac{{10}}{3}\) (tại \(x = 1\)), và GTLN là \(\frac{{46}}{7}\) (tại \(x = 5\))

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 0 \right) = \frac{{\ln \left( {0 + 1} \right)}}{{0 + 1}} = 0;f\left( 3 \right) = \frac{{\ln \left( {3 + 1} \right)}}{{3 + 1}} = \frac{{\ln \left( 2 \right)}}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {0;3} \right]\) là 0 (tại \(x = 0\)), và GTLN là \(\frac{{\ln \left( 2 \right)}}{2}\) (tại \(x = 3\))

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( { - \frac{\pi }{2}} \right) = 2\sin \left( {3\left( { - \frac{\pi }{2}} \right)} \right) + 7\left( { - \frac{\pi }{2}} \right) + 1 = 3 - \frac{{7\pi }}{2}\)

\(f\left( {\frac{\pi }{2}} \right) = 2\sin \left( {3\left( {\frac{\pi }{2}} \right)} \right) + 7\left( {\frac{\pi }{2}} \right) + 1 = - 1 + \frac{{7\pi }}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\) là \(3 - \frac{{7\pi }}{2}\) (tại \(x = \frac{{ - \pi }}{2}\)), và GTLN là \( - 1 + \frac{{7\pi }}{2}\) (tại \(x = \frac{\pi }{2}\))

Advertisements (Quảng cáo)