Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 6.21 trang 80 Toán 12 tập 2 – Kết nối...

Bài tập 6.21 trang 80 Toán 12 tập 2 - Kết nối tri thức: Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0...

Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Giải và trình bày phương pháp giải Giải bài tập 6.21 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức - Bài tập cuối chương 6 . Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0,35 có phản ứng phụ sau tiêm, người không có bệnh nền thì chỉ có phản ứng phụ sau tiêm với xác suất 0,16. Chọn ngẫu nhiên một người được tiêm vaccine và người này có phản ứng phụ. Tính xác suất để người này có bệnh nền, biết rằng tỉ lệ người có bệnh nền ở địa phương X là 18%.

Một loại vaccine được tiêm ở địa phương X. Người có bệnh nền thì với xác suất 0,35 có phản ứng phụ sau tiêm, người không có bệnh nền thì chỉ có phản ứng phụ sau tiêm với xác suất 0,16. Chọn ngẫu nhiên một người được tiêm vaccine và người này có phản ứng phụ. Tính xác suất để người này có bệnh nền, biết rằng tỉ lệ người có bệnh nền ở địa phương X là 18%.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về công thức Bayes để tính: Cho A và B là hai biến cố, với \(P\left( B \right) > 0\). Khi đó, ta có công thức sau: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi A là biến cố: “Người bị bệnh nền”, B là biến cố: “Người có phản ứng phụ sau tiêm”

Khi đó, \(P\left( A \right) = 0,18,P\left( {\overline A } \right) = 0,82\), \(P\left( {B|A} \right) = 0,35,P\left( {B|\overline A } \right) = 0,16\)

Theo công thức Bayes ta có:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,18.0,35}}{{0,18.0,35 + 0,82.0,16}} = \frac{{315}}{{971}}\)

Vậy xác suất để người này có bệnh nền nếu chọn ngẫu nhiên một người được tiêm vaccine biết người này có phản ứng phụ là \(\frac{{315}}{{971}}\).

Advertisements (Quảng cáo)