Bài 14. Cho mặt phẳng \((α) : 2x + y + 3z + 1= 0\) và đường thẳng \(d\) có phương trình tham số :
\(\left\{ \matrix{
x = - 3 + t \hfill \cr
y = 2 - 2t \hfill \cr
z = 1. \hfill \cr} \right.\)
Trong các mệnh đề sau, mệnh đề nào đúng?
(A) \(d ⊥ (α)\) ;
(B) \(d\) cắt \( (α)\) ;
(C) \(d // (α)\) ;
(D) \(d ⊂ (α)\).
Advertisements (Quảng cáo)
Mặt phẳng \((\alpha)\) có véc tơ pháp tuyến \(\vec n=(2;1;3)\)
Đường thẳng \(d\) có véc tơ chỉ phương \(\vec u=(1;-2;0)\)
\(\vec n.\vec u=0\)
Chọn \(M(-3;2;1)\in d\) thay tọa độ của \(M\) vào phương trình mặt phẳng \((\alpha)\) ta được:ư
\(2.(-3)+2+3.1+1=0\) do đó \(M\in (\alpha)\)
Hay \(d ⊂ (α)\)
Chọn (D)