Bài 108. Một số có tổng các chữ số chia cho \(9\) (cho \(3\)) dư \(m\) thì số đó chia cho \(9\) ( cho \(3\)) cũng dư \(m\).
Ví dụ: Số \(1543\) có tổng các chữ số bằng: \(1 + 5 + 4 + 3 = 13\). Số \(13\) chia cho \(9\) dư \(4\) chia cho \(3\) dư \(1\). Do đó số \(1543\) chia cho \(9\) dư \(4\), chia cho \(3\) dư \(1\).
Tìm số dư khi chia mỗi số sau cho \(9\), cho \(3\):
\(1546; 1526; 2468; 10^{11}\)
Advertisements (Quảng cáo)
Chỉ cần tìm dư trong phép chia tổng các chữ số cho \(9\), cho \(3\).
+) Vì \(1 + 5 + 4 + 6 = 16\) chia cho \(9\) dư \(7\) và chia cho \(3\) dư \(1\) nên \(1546\) chia cho \(9\) dư \(7\), chia cho \(3\) dư \(1\);
+) Vì \(1 + 5 + 2 + 7 = 15\) chia cho \(9\) dư \(6\), chia hết cho \(3\) nên \(1527\) chia cho \(9\) dư \(6\) chia hết cho \(3\);
Tương tự, \(2468\) chia cho \(9\) dư \(2\), chia cho \(3\) dư \(2\);
+) \(10^{11}\) có tổng các chữ số là \(1\) nên chia cho \(9\) dư \(1\), chia cho \(3\) dư \(1\).