Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 58 trang 86 SBT Toán lớp 7 Cánh diều: Cho tam...

Bài 58 trang 86 SBT Toán lớp 7 Cánh diều: Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC (D ∈ AC)....

Giải Bài 58 trang 86 sách bài tập toán 7 - Cánh diều - Bài 8: Đường vuông góc và đường xiên

Question - Câu hỏi/Đề bài

Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC (D ∈ AC). Qua C kẻ tia Cx vuông góc với AC cắt BD tại M.

a) Chứng minh tam giác CBM là tam giác cân.

b) So sánh độ dài CM và AC.

- Chứng minh: \(\widehat M = \widehat {{B_2}}\) suy ra tam giác CBM cân tại C.

- Chứng minh: CM = BC và BC > AC suy ra CM > AC

Answer - Lời giải/Đáp án

 

a) Vì ∆ABD vuông tại A nên \({\hat B_1} + {\hat D_1} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90o)

Advertisements (Quảng cáo)

Mà \({\hat B_1} = {\hat B_2}\) (do BD là tia phân giác của góc ABC) và \({\hat D_1} = {\hat D_2}\) (hai góc đối đỉnh).

Nên \({\hat B_2} + {\hat D_2} = 90^\circ \)

Vì ∆CDM vuông tại C nên \(\hat M + {\hat D_2} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90o).

Suy ra \(\hat M = {\hat B_2}\)

Do đó tam giác CBM cân tại C.

Vậy tam giác CBM cân tại C.

b) Vì tam giác CBM cân tại C (chứng minh câu a)

Nên CM = BC.

Vì ∆ABC vuông tại A nên BC > AC (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).

Suy ra CM > AC.

Vậy CM > AC.

Advertisements (Quảng cáo)