Trang chủ Lớp 7 SBT Toán 7 - Kết nối tri thức Bài 2.4 trang 24 SBT Toán 7 Kết nối tri thức: Các...

Bài 2.4 trang 24 SBT Toán 7 Kết nối tri thức: Các phân số trên đã tối giản....

Giải bài 2.4 trang 24 sách bài tập toán 7 - Kết nối tri thức với cuộc sống - Bài 5: Làm quen với số thập phân vô hạn tuần hoàn

Question - Câu hỏi/Đề bài

Trong các phân số:\(\dfrac{{13}}{{15}};\dfrac{{13}}{4};\dfrac{{ - 1}}{{18}};\dfrac{{11}}{6};\dfrac{7}{{20}};\dfrac{{ - 19}}{{50}}\), gọi A là tập hợp các phân số viết được thành số thập phân hữu hạn và B là tập hợp các phân số viết được thành số thập phân vô hạn tuần hoàn. Liệt kê và viết các phần tử của hai tập hợp đó theo thứ tự từ nhỏ đến lớn.

Các phân số tối giản với mẫu dương mà mẫu chỉ có ước nguyên tố là 2 và 5 đều viết được dưới dạng số thập phân hữu hạn

Các phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 đều viết được dưới dạng số thập phân vô hạn tuần hoàn.

Answer - Lời giải/Đáp án

Các phân số trên đã tối giản.

Advertisements (Quảng cáo)

Ta có:

\(\begin{array}{l}15 = 3.5;\\4 = {2^2}\\18 = {2.3^2}\\6 = 2.3\\20 = {2^2}.5\\50 = {2.5^2}\end{array}\)

Như vậy: Tập hợp A gồm các phân số viết được thành số thập phân hữu hạn (mẫu chỉ có ước nguyên tố là 2 và 5) gồm các phần tử: \( - \dfrac{19}{50};\dfrac{7}{20};\dfrac{13}{4}\)

Tập hợp B gồm các phân số viết được thành số thập phân vô hạn tuần hoàn (mẫu có ước nguyên tố khác 2 và 5) gồm các phần tử: \(\dfrac{1}{{18}};\dfrac{{13}}{{15}};\dfrac{{11}}{6}\)

Vì \( - \dfrac{19}{50}<0<\dfrac{7}{20}<1<\dfrac{13}{4}\) nên \( - \dfrac{19}{50}<\dfrac{7}{20}<\dfrac{13}{4}\)

Vì \(\dfrac{1}{{18}}<\dfrac{1}{2}<\dfrac{{13}}{{15}}<1<\dfrac{{11}}{6}\) nên \(\dfrac{1}{{18}}<\dfrac{{13}}{{15}}<\dfrac{{11}}{6}\)

Từ đó ta được:

\(\begin{array}{l}A = \left\{ { - \dfrac{{19}}{{50}};\dfrac{7}{{20}};\dfrac{{13}}{4}} \right\}\\B = \left\{ { - \dfrac{1}{{18}};\dfrac{{13}}{{15}};\dfrac{{11}}{6}} \right\}\end{array}\)