Trang chủ Lớp 7 SBT Toán 7 - Kết nối tri thức Bài 4.25 trang 61 SBT Toán lớp 7 Kết nối tri thức:...

Bài 4.25 trang 61 SBT Toán lớp 7 Kết nối tri thức: Cho các điểm A, B, C, D như Hình 4.25, biết rằng (widehat {BAC} = widehat {BAD})...

Giải bài 4.25 trang 61 sách bài tập toán 7 - Kết nối tri thức với cuộc sống - Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Question - Câu hỏi/Đề bài

Cho các điểm A, B, C, D như Hình 4.25, biết rằng ^BAC=^BAD^BCA=^BDA. Chứng minh rằng ΔABC=ΔABD.

- Chứng minh ^ABC=^ABD (Dựa vào tổng 3 góc trong tam giác)

- Chứng minh ΔABC=ΔABD(g – c – g )

Answer - Lời giải/Đáp án

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

Advertisements (Quảng cáo)

^ABC+^BAC+^BCA=1800^ABC=1800^BAC^BCA

Áp dụng định lí tổng ba góc trong tam giác ABD, ta có:

^ABD+^BAD+^BDA=1800^ABD=1800^BAD^BDA

^BAC=^BAD;^BCA=^BDA(gt)

^ABC=^ABD

Xét ΔABCΔABD có:

^BAC=^BAD(gt)

AB chung

^ABC=^ABD

ΔABC=ΔABD(gcg) 

Advertisements (Quảng cáo)