Tính:
a) \(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3}\); b) \({y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25)\);
c) \((2{x^2} + x + 4)({x^2} - x - 1)\); d) \((3x - 4)(2x + 1) - (x - 2)(6x + 3)\).
a)Muốn nhân đơn thức A với đơn thức B, ta làm như sau:
Nhân hệ số của đơn thức A với hệ số của đơn thức B;
Nhân lũy thừa của biến trong A với lũy thừa của biên đó trong B;
Advertisements (Quảng cáo)
Nhân các kết quả vừa tìm được với nhau.
b) Muốn nhân một đơn thức với đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các tích với nhau.
c); d) Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích lại với nhau.
a) \(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);
b) \(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);
c) \(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) = 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 = 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);
d) \(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) = 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).