Trang chủ Lớp 7 Toán lớp 7 (sách cũ) Bài 5 trang 8 sgk Toán 7 tập 1, Hãy chứng tỏ...

Bài 5 trang 8 sgk Toán 7 tập 1, Hãy chứng tỏ rằng...

Hãy chứng tỏ rằng. Bài 5 trang 8 sgk toán 7 tập 1 - Tập hợp Q các số hữu tỉ

Giả sử x = \(\frac{a}{m}\) ; y = \(\frac{b}{m}\) ( a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\frac{a + b}{2m}\) thì ta có x < z < y

Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (  a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a + b}{2m}\)

Vì a < b => a + a < a +b => 2a < a + b

Advertisements (Quảng cáo)

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y

                                                                                                              

Bạn đang xem bài tập, chương trình học môn Toán lớp 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)