Trang chủ Lớp 7 Toán lớp 7 (sách cũ) Lý thuyết tập hợp Q các số hữu tỉ, Mỗi số hữu...

Lý thuyết tập hợp Q các số hữu tỉ, Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó...

Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó. Lý thuyết tập hợp Q các số hữu tỉ - Tập hợp Q các số hữu tỉ

1. Số hữu tỉ: Số hữu tỉ là số có thể viết dưới dạng \(\frac{a}{b}\) với a, b ∈  Z, b # 0 và được kí hiệu là Q

2. Biểu diễn số hữu tỉ trên trục số:

Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó

3. So sánh số hữu tỉ. Để so sánh hai số hữu tỉ x,y ta làm như sau:

- Viết x,y dưới dạng phân số cùng mẫu dương

\(x = \frac{a}{m} ; y = \frac{b}{m} ( m>0)\)

- So sánh các tử là số nguyên a và b

Nếu a> b thì x > y

Advertisements (Quảng cáo)

Nếu a = b thì x=y

Nếu a < b thì x < y

4. Chú ý:

- Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương

- Số hữu tỉ nhỏ hơn 0 gọi là số hữu tỉ âm

- Số 0 không là số hữu tỉ dương, cũng không là số hữu tỉ âm

                                  

Bạn đang xem bài tập, chương trình học môn Toán lớp 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)