Tính chất đường phân giác của tam giác: trong tam giác. Phân tích và lời giải bài 68 trang 85 sách bài tập toán 8 – Cánh diều - Bài tập cuối chương VIII. Cho tam giác \(ABC\) có ba góc nhọn, điểm \(I\) thuộc cạnh \(BC\) và \(IM,...
Cho tam giác \(ABC\) có ba góc nhọn, điểm \(I\) thuộc cạnh \(BC\) và \(IM,IN\) lần lượt là đường phân giác của các góc \(AIC\) và \(AIB\). Chứng minh: \(AN.BI.CM=BN.IC.AM\).
Tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.
Advertisements (Quảng cáo)
Áp dụng tính chất đường phân giác vào các tam giác \(ABI,AIC\) ta có: \(\frac{AN}{NB}=\frac{AI}{BI};\frac{CM}{MA}=\frac{IC}{AI}\).
Suy ra \(\frac{BI}{IC}.\frac{AN}{NB}.\frac{CM}{MA}=\frac{BI}{IC}.\frac{AI}{BI}.\frac{IC}{AI}=1\)
Do đó \(AN.BI.CM=BN.IC.AM\).