Cho tam giác MAB và ABN như Hình 5. Biết \(MA = 10cm,MB = 15cm,AB = 8cm,NA = 12cm,NB = 6,4cm\). Chứng minh rằng:
a) $\Delta MAB\backsim \Delta ABN$.
b) Tứ giác AMBN là hình thang.
Advertisements (Quảng cáo)
Sử dụng kiến thức về trường hợp đồng dạng thứ nhất của hai tam giác (c.c.c) để chứng minh: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
a) Xét tam giác MAB và tam giác ABN có: \(\frac{{MA}}{{AB}} = \frac{{AB}}{{BN}} = \frac{{MB}}{{AN}}\left( { = \frac{5}{4}} \right)\) Do đó, $\Delta MAB\backsim \Delta ABN\left( c.c.c \right)$
b) Vì $\Delta MAB\backsim \Delta ABN\left( cmt \right)$ nên \(\widehat {MAB} = \widehat {NBA}\), mà hai góc này ở vị trí so le trong nên MA//NB. Suy ra, tứ giác AMBN là hình thang.