Thực hiện các phép nhân:
a) \(\left( {x + 3y} \right)\left( {x - 2y} \right)\);
b) \(\left( {2x - y} \right)\left( {y - 5x} \right)\);
c) \(\left( {2x - 5y} \right)\left( {{y^2} - 2xy} \right)\);
d) \(\left( {x - y} \right)\left( {{x^2} - xy - {y^2}} \right)\).
Sử dụng kiến thức nhân hai đa thức để tính: Để nhân hai đa thức, ta lấy từng hạng tử của đa thức này nhân với đa thức kia, rồi cộng các kết quả với nhau.
Advertisements (Quảng cáo)
a) \(\left( {x + 3y} \right)\left( {x - 2y} \right) = x\left( {x - 2y} \right) + 3y\left( {x - 2y} \right) = {x^2} - 2xy + 3xy - 6{y^2}\)
\( = {x^2} + \left( {3xy - 2xy} \right) - 6{y^2} = {x^2} + xy - 6{y^2}\)
b) \(\left( {2x - y} \right)\left( {y - 5x} \right) = 2x\left( {y - 5x} \right) - y\left( {y - 5x} \right) = 2xy - 10{x^2} - {y^2} + 5xy\)
\( = \left( {2xy + 5xy} \right) - 10{x^2} - {y^2} = 7xy - 10{x^2} - {y^2}\)
c) \(\left( {2x - 5y} \right)\left( {{y^2} - 2xy} \right) = 2x\left( {{y^2} - 2xy} \right) - 5y\left( {{y^2} - 2xy} \right) = 2x{y^2} - 4{x^2}y - 5{y^3} + 10x{y^2}\)
\( = \left( {2x{y^2} + 10x{y^2}} \right) - 4{x^2}y - 5{y^3} = 12x{y^2} - 4{x^2}y - 5{y^3}\)
d) \(\left( {x - y} \right)\left( {{x^2} - xy - {y^2}} \right) = x\left( {{x^2} - xy - {y^2}} \right) - y\left( {{x^2} - xy - {y^2}} \right)\)
\( = {x^3} - {x^2}y - x{y^2} - {x^2}y + x{y^2} + {y^3} = {x^3} - \left( {{x^2}y + {x^2}y} \right) + \left( {x{y^2} - x{y^2}} \right) + {y^3} = {x^3} - 2{x^2}y + {y^3}\)