Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 7 trang 7 SBT Toán 8 – Chân trời sáng tạo:...

Bài 7 trang 7 SBT Toán 8 - Chân trời sáng tạo: Thu gọn và tìm bậc của mỗi đa thức sau...

Sử dụng kiến thức về đa thức thu gọn để thu gọn các đa thức. Hướng dẫn giải bài 7 trang 7 sách bài tập (SBT) toán 8 - Chân trời sáng tạo - Bài 1. Đơn thức và đa thức nhiều biến. Thu gọn và tìm bậc của mỗi đa thức sau:...

Question - Câu hỏi/Đề bài

Thu gọn và tìm bậc của mỗi đa thức sau:

a) \(6x - 3y - 4x - y + 3x - 1\);

b) \(3{x^2}y + 2x{y^2} - 3x{y^2} - 2{x^2}y\);

c) \({x^2}yz - \frac{1}{2}zy{x^2} + \frac{1}{2}yx{z^2}\);

d) \( - 2xyx + 6y{x^2}y + 5{x^2}y - 4{x^2}{y^2} - 5x{y^2}x\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức về đa thức thu gọn để thu gọn các đa thức: Đa thức thu gọn là đa thức không chứa hai hạng tử nào đồng dạng.

Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng đó với nhau.

Advertisements (Quảng cáo)

+ Sử dụng kiến thức về bậc của đa thức để tìm bậc của các đa thức: Bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức gọi là bậc của đa thức đó.

Answer - Lời giải/Đáp án

a) \(6x - 3y - 4x - y + 3x - 1 = \left( {6x - 4x + 3x} \right) + \left( { - 3y - y} \right) - 1 = 5x - 4y - 1\); đa thức này có bậc 1.

b) \(3{x^2}y + 2x{y^2} - 3x{y^2} - 2{x^2}y = \left( {3{x^2}y - 2{x^2}y} \right) + \left( {2x{y^2} - 3x{y^2}} \right) = {x^2}y - x{y^2}\); đa thức này có bậc 3.

c) \({x^2}yz - \frac{1}{2}zy{x^2} + \frac{1}{2}yx{z^2} = \left( {{x^2}yz - \frac{1}{2}{x^2}yz} \right) + \frac{1}{2}yx{z^2} = \frac{1}{2}{x^2}yz + \frac{1}{2}xy{z^2}\); đa thức này có bậc 4.

d) \( - 2xyx + 6y{x^2}y + 5{x^2}y - 4{x^2}{y^2} - 5x{y^2}x\)\( = - 2{x^2}y + 6{x^2}{y^2} + 5{x^2}y - 4{x^2}{y^2} - 5{x^2}{y^2}\)

\( = \left( { - 2{x^2}y + 5{x^2}y} \right) + \left( {6{x^2}{y^2} - 4{x^2}{y^2} - 5{x^2}{y^2}} \right)\)\( = 3{x^2}y - 3{x^2}{y^2}\)

Đa thức này có bậc 4.

Advertisements (Quảng cáo)