Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Bài 1.28 trang 18 SBT Toán 8 – Kết nối tri thức:...

Bài 1.28 trang 18 SBT Toán 8 - Kết nối tri thức: Cho hai đa thức: \(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\); \(Q...

Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó. b) Muốn cộng (hay trừ) hai đa thức. Hướng dẫn giải bài 1.28 trang 18 sách bài tập (SBT) toán 8 - Kết nối tri thức với cuộc sống - Bài tập cuối chương I. Cho hai đa thức: \(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\); \(Q...

Question - Câu hỏi/Đề bài

Cho hai đa thức:

\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\);

\(Q = - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\).

a) Thu gọn và xác định bậc của mỗi đa thức P và Q.

b) Xác định bậc của mỗi đa thức \(P + Q\) và \(P - Q\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

b) Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Answer - Lời giải/Đáp án

a) Ta có

\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\)

\( = \left( {4{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 3{x^2}y + {x^2}y} \right) - 2xy + y + 5\)

Advertisements (Quảng cáo)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5\).

Đa thức P có bậc \(3 + 1 + 2 = 6\).

\(Q = - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\)

\( = \left( { - {x^3}y{z^2} + 3{x^3}y{z^2}} \right) - 2{x^2}y + xy - y + \left( {3 + 2} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\).

Đa thức Q có bậc là \(3 + 1 + 2 = 6\).

b) Ta có

  • \(P + Q = \left( {2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5} \right) + \left( {2{x^3}y{z^2} - 2{x^2}y + xy - y + 5} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 + 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\)

\( = \left( {2{x^3}y{z^2} + 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y - 2{x^2}y} \right) + \left( { - 2xy + xy} \right) + \left( {y - y} \right) + \left( {5 + 5} \right)\)

\( = 4{x^3}y{z^2} - 4{x^2}y - xy + 10\).

Đa thức P+Q là đa thức bậc 6.

  • \(P - Q = \left( {2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5} \right) - \left( {2{x^3}y{z^2} - 2{x^2}y + xy - y + 5} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 - 2{x^3}y{z^2} + 2{x^2}y - xy + y - 5\)

\( = \left( {2{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y + 2{x^2}y} \right) + \left( { - 2xy - xy} \right) + \left( {y + y} \right) + \left( {5 - 5} \right)\)

\( = - 3xy + 2y\).

Đa thức P-Q là đa thức bậc 2.

Advertisements (Quảng cáo)