Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Giải mục 1 trang 83 Toán 8 – Cánh diều: Cho hai...

Giải mục 1 trang 83 Toán 8 – Cánh diều: Cho hai tam giác ABC, A’B’C’ sao cho \(\widehat {A’} = \widehat A, \, \...

Lời Giải HĐ1, LT1 mục 1 trang 83 SGK Toán 8 – Cánh diều Bài 8. Trường hợp đồng dạng thứ ba của tam giác. Cho hai tam giác ABC...

Hoạt động1

Cho hai tam giác ABC, A’B’C’ sao cho \(\widehat {A’} = \widehat A,\,\,\widehat {B’} = \widehat B\) và \(A’B’ \ne AB\) (Hình 80). Trên tia A’B’ lấy điểm M khác B thỏa mãn \(A’M = AB\). Qua M kẻ đường thẳng song song với B’C’ cắt tia A’C’ tại N. Chứng minh \(\Delta A’MN = \Delta ABC\). Từ đó suy ra \(\Delta A’B’C’ \backsim \Delta ABC\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chứng minh \(\Delta A’MN = \Delta ABC\) theo các trường hợp đã học từ đó chứng minh \(\Delta A’B’C’ \backsim \Delta ABC\).

Answer - Lời giải/Đáp án

Vì \(MN\parallel B’C’\) nên \(\widehat {A’MN} = \widehat {A’B’C’}\) (hai góc đồng vị)

\( \Rightarrow \widehat M = \widehat B\)

Xét tam giác A’MN và tam giác ABC có:

\(\widehat {A’} = \widehat A;\,\,A’M = AB;\,\,\widehat M = \widehat B\)

\( \Rightarrow \Delta A’MN = \Delta ABC\) (g-c-g)

Vì \(MN\parallel B’C’\) nên \(\Delta A’MN \backsim \Delta A’B’C’\)

Advertisements (Quảng cáo)

\( \Rightarrow \Delta ABC \backsim \Delta A’B’C’\)


Luyện tập1

Cho hai tam giác ABC và MNP thỏa mãn \(\widehat A = 50^\circ ,\,\,\widehat B = 60^\circ ,\,\,\widehat N = 60^\circ ,\,\,\widehat P = 70^\circ \). Chứng minh \(\Delta ABC \backsim \Delta MNP\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Tìm số đo các góc còn lại của hai tam giác rồi chứng minh \(\Delta ABC \backsim \Delta MNP\) theo trường hợp đồng dạng thứ ba.

Answer - Lời giải/Đáp án

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ + 60^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)

Xét tam giác ABC và tam giác MNP có:

\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).

Advertisements (Quảng cáo)