Hoạt động3
Quan sát phương trình (ẩn \(x\)): \(4x + 12 = 0\), nêu nhận xét về bậc của đa thức ở vế trái của phương trình đó.
Xác định đa thức ở vế trái rồi xác định bậc của đa thức đó.
Đa thức ở vế trái là: \(4x + 12\)
Đa thức có bậc 1
Luyện tập1
Nêu hai ví dụ về phương trình bậc nhất ẩn \(x\)
Dựa vào định nghĩa về phương trình bậc nhất một ẩn để đưa ra hai ví dụ về phương trình bậc nhất ẩn \(x\).
Hai ví dụ về phương trình bậc nhất ẩn \(x\):
\(3x + 9 = 0\) và \(4x - \frac{1}{2} = 0\).
Luyện tập2
Kiểm tra xem \(x = - 3\) có là nghiệm của phương trình bậc nhất \(5x + 15 = 0\) hay không.
Tham khảo Ví dụ 2 Sách giáo khoa Toán 8 – Cánh diều.
Thay \(x = - 3\) vào phương trình ta có: \(5.\left( { - 3} \right) + 15 = - 15 + 15 = 0\)
Vậy \(x = - 3\) là nghiệm của phương trình \(5x + 15 = 0\).
Hoạt động4
Nêu quy tắc chuyển vế trong một đẳng thức số.
Nhớ lại quy tắc chuyển vế trong một đẳng thức số đã được học.
Quy tắc: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu "+” đổi thành dấu "−” và dấu "−” thành dấu "+”.
Hoạt động5
Xét đẳng thức số: \(2 + 3 - 4 = 9 - 10 + 2\). Tính giá trị mỗi vế của đẳng thức đó khi nhân cả hai vế với 5 và so sánh hai giá trị nhận được.
Advertisements (Quảng cáo)
- Xác định vế trái, vế phải của đẳng thức.
- Nhân mỗi vế với 5 rồi so sánh hai kết quả.
Vế trái của đẳng thức: \(2 + 3 - 4\)
Khi nhân vế trái với 5 ta được: \(5.\left( {2 + 3 - 4} \right) = 5.1 = 5\)
Vế phải của đẳng thức: \(9 - 10 + 2\)
Khi nhân vế phải với 5 ta được: \(5.\left( {9 - 10 + 2} \right) = 5.1 = 5\)
Ta thấy sau khi nhân mỗi vế với 5, giá trị của hai vế bằng nhau.
Luyện tập3
Giải các phương trình:
a) \( - 6x - 15 = 0\);
b) \( - \frac{9}{2}x + 21 = 0.\)
Dựa vào các quy tắc chuyển vế và quy tắc nhân để giải phương trình.
a)
\(\begin{array}{l} - 6x - 15 = 0\\\,\,\,\,\,\,\,\,\, - 6x = 15\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 15:\left( { - 6} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \frac{5}{2}\end{array}\)
Vậy phương trình có nghiệm \(x = - \frac{5}{2}\)
b)
\(\begin{array}{l} - \frac{9}{2}x + 21 = 0\\\,\,\,\,\,\,\,\,\, - \frac{9}{2}x = - 21\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 21} \right):\left( { - \frac{9}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{{14}}{3}\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{{14}}{3}\)
Luyện tập4
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
Dựa vào quy tắc chuyển vế, quy tắc nhân và quy tắc phá ngoặc để giải phương trình.
\(\begin{array}{l}2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\\\,\,\,\,\,2x - 1,4 - 1,6 = 1,5 - x - 1,2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x - 3 = 0,3 - x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x + x = 0,3 + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x = 3,3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1,1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1,1.\)